Skip to content

Non-Deterministic Finite Automata - NFA

NFA is the class used in automathon to represent a Non-Deterministic Finite Automata.

Attributes

Here are the attributes of the NFA class:

  • q (set[str]): Set of strings where each string is a state of the automata.
  • sigma (set[str]): Set of strings where each string is a symbol of the alphabet, the length of each string must be 1. The empty string is allowed in the NFA implementation as the epsilon transition.
  • delta (dict[str, dict[str, set[str]]]): Dictionary that represents the transition function of the automata. The key of the dictionary is a state of the automata and the value is another dictionary that represents the transition function of the automata. The key of the inner dictionary is a symbol of the alphabet and the value is a set of states that the automata will go if it consumes the symbol.
    • Example:
      delta = {
          'q0' : {
                  '0' : {'q0', 'q2'},
                  '1' : {'q1', 'q2', 'q3'}
                  },
          'q1' : {
                  '0' : {'q2'},
                  '1' : {'q0', 'q1'}
                  },
          'q2' : {
                  '0' : {'q1', 'q2'},
                  '' : {'q2'}
                  },
      }
      
  • initial_state (str): String that represents the initial state of the automata. initial_state must be in q.
  • f (set[str]): Set of strings where each string is a final state of the automata. f must be a subset of q.

Example

Here is an example of how to create a NFA:

from automathon import NFA

## Epsilon Transition is denoted by '' -> Empty string
q = {'q1', 'q2', 'q3', 'q4'}
sigma = {'0', '1'}
delta = {
    'q1' : {
            '0' : {'q1'},
            '1' : {'q1', 'q2'}
            },
    'q2' : {
            '0' : {'q3'},
            '' : {'q3'}
            },
    'q3' : {
            '1' : {'q4'},
            },
    'q4' : {
            '0' : {'q4'},
            '1' : {'q4'},
            },
}
initial_state = 'q1'
f = {'q4'}

automata = NFA(q, sigma, delta, initial_state, f)

Functions and Methods

The NFA class has multiple functions and methods that you can use to interact with the automata. Here are the methods:

is_valid

This function checks if the automata is valid. The automata is valid if the initial state and the final states are in q, if the transitions are in q and sigma. If the automata is not valid, the function will raise an exception with the error message.

Example:

automata.is_valid()    # True

accept

This function receives a string and returns True if the automata accepts the string, otherwise it returns False.

Example:

automata.accept("0000011")   # True
automata.accept("000001")    # False

view

This method receives a string as the file name for the png and svg files. It enables to visualize the automaton. You can also add custom styling to the automata.

automata.view("NFA Visualization")

# Add custom styling or change the file format

automata.view(
    file_name="NFA Custom Styling",
    file_format="png" or "svg",
    node_attr={'fontsize': '20'},
    edge_attr={'fontsize': '20pt'}
)

Here is the result of the visualization:

NFA Visualization

contains_epsilon_transitions

This function returns True if the automata contains epsilon transitions, otherwise it returns False.

Example:

automata.contains_epsilon_transitions()    # True

remove_epsilon_transitions

This function returns a new NFA that represents the same language as the original NFA but without epsilon transitions.

Example:

automata_1 = automata.remove_epsilon_transitions()

automata_1.accept("0000011")   # True
automata_1.accept("000001")    # False

minimize

This function returns a new NFA that represents the same language as the original NFA but minimized.

Example:

automata_2 = automata.minimize()

automata_2.accept("0000011")   # True
automata_2.accept("000001")    # False

renumber

This method modifies the automata by renumbering the states. The new states will be named as q0, q1, q2, and so on.

Example:

automata.renumber()

automata.accept("0000011")   # True
automata.accept("000001")    # False

get_dfa

This function returns a new DFA that represents the same language as the original NFA.

Example:

automata_3 = automata.get_dfa()

automata_3.accept("0000011")   # True
automata_3.accept("000001")    # False

complement

This function returns the complement of the automata. The complement of the automata is another automata that accepts the strings that the original automata doesn't accept and vice versa. This function returns a new automata, it doesn't modify the original one.

Example:

not_automata = automata.complement()

not_automata.accept("000001")    # True
not_automata.accept("0000011")   # False

union

This function receives another automata and returns a new automata that represents the union of the languages of the original automata and the automata received as a parameter.

Example:

from automathon import NFA

nfa = NFA(
    q={"A"},
    sigma={"a"},
    delta={"A": {"a": {"A"}}},
    initial_state="A",
    f={"A"}
)

nfa_1 = NFA(
    q={"C", "D", "E"},
    sigma={"a", "b"},
    delta={
        "C": {
            "b": {"D"},
        },
        "D": {"a": {"E"}, "b": {"D"}},
    },
    initial_state="C",
    f={"E"},
)

union_result = nfa.union(nfa_1)

union_result.is_valid()             # True
union_result.accept("aaaaaa")       # True
union_result.accept("aaaabbbbaaa")  # False

intersection

This function receives another automata and returns a new automata that represents the intersection of the languages of the original automata and the automata received as a parameter.

Example:

nfa = NFA(
    q={"q1", "q2", "q3", "q4", "q5"},
    sigma={"a", "b"},
    delta={
        "q1": {
            "a": {"q2", "q1"},
            "b": {"q1"},
        },
        "q2": {"a": {"q3"}},
        "q3": {
            "a": {"q3", "q4"},
            "b": {"q3"},
        },
        "q4": {"a": {"q5"}},
        "q5": {
            "a": {"q5"},
            "b": {"q5"},
        },
    },
    initial_state="q1",
    f={"q5"},
)

nfa_1 = NFA(
    q={"q1", "q2", "q3"},
    sigma={"a", "b"},
    delta={
        "q1": {
            "a": {"q2", "q1"},
            "b": {"q1"},
        },
        "q2": {"a": {"q3"}},
        "q3": {
            "a": {"q3"},
            "b": {"q3"},
        },
    },
    initial_state="q1",
    f={"q3"},
)

intersection_result = nfa.intersection(nfa_1)

intersection_result.is_valid()                  # True
intersection_result.accept("aaaaaaaa")          # True
intersection_result.accept("aaaaaaaabbbbb")     # True
intersection_result.accept("a")                 # False
intersection_result.accept("bbbbbbbb")          # False

product

This function receives another automata and returns a new automata that represents the product of the languages of the original automata and the automata received as a parameter.

Example:

from automathon import NFA

nfa = NFA(
    q={"A", "B"},
    sigma={"a", "b"},
    delta={"A": {"a": {"B"}, "b": {"A"}}, "B": {"a": {"A"}, "b": {"B"}}},
    initial_state="A",
    f={"A"},
)

nfa_1 = NFA(
    q={"C", "D"},
    sigma={"a", "b"},
    delta={"C": {"a": {"C"}, "b": {"D"}}, "D": {"a": {"D"}, "b": {"C"}}},
    initial_state="C",
    f={"C"},
)

product_result = nfa.product(nfa_1)

product_result.is_valid()           # True
product_result.accept("")           # True
product_result.accept("bb")         # True
product_result.accept("bbaaa")      # False