Non-Deterministic Finite Automata - NFA
NFA
is the class used in automathon to represent a Non-Deterministic Finite
Automata.
Attributes
Here are the attributes of the NFA
class:
q
(set[str]
): Set of strings where each string is a state of the automata.sigma
(set[str]
): Set of strings where each string is a symbol of the alphabet, the length of each string must be 1. The empty string is allowed in theNFA
implementation as the epsilon transition.delta
(dict[str, dict[str, set[str]]]
): Dictionary that represents the transition function of the automata. The key of the dictionary is a state of the automata and the value is another dictionary that represents the transition function of the automata. The key of the inner dictionary is a symbol of the alphabet and the value is a set of states that the automata will go if it consumes the symbol.- Example:
initial_state
(str
): String that represents the initial state of the automata. initial_state must be in q.f
(set[str]
): Set of strings where each string is a final state of the automata. f must be a subset of q.
Example
Here is an example of how to create a NFA
:
from automathon import NFA
## Epsilon Transition is denoted by '' -> Empty string
q = {'q1', 'q2', 'q3', 'q4'}
sigma = {'0', '1'}
delta = {
'q1' : {
'0' : {'q1'},
'1' : {'q1', 'q2'}
},
'q2' : {
'0' : {'q3'},
'' : {'q3'}
},
'q3' : {
'1' : {'q4'},
},
'q4' : {
'0' : {'q4'},
'1' : {'q4'},
},
}
initial_state = 'q1'
f = {'q4'}
automata = NFA(q, sigma, delta, initial_state, f)
Functions and Methods
The NFA
class has multiple functions and methods that you can use to interact
with the automata. Here are the methods:
is_valid
This function checks if the automata is valid. The automata is valid if the initial state and the final states are in q, if the transitions are in q and sigma. If the automata is not valid, the function will raise an exception with the error message.
Example:
accept
This function receives a string and returns True
if the automata accepts the
string, otherwise it returns False
.
Example:
view
This method receives a string as the file name for the png and svg files. It enables to visualize the automaton. You can also add custom styling to the automata.
automata.view("NFA Visualization")
# Add custom styling or change the file format
automata.view(
file_name="NFA Custom Styling",
file_format="png" or "svg",
node_attr={'fontsize': '20'},
edge_attr={'fontsize': '20pt'}
)
Here is the result of the visualization:
contains_epsilon_transitions
This function returns True
if the automata contains epsilon transitions,
otherwise it returns False
.
Example:
remove_epsilon_transitions
This function returns a new NFA
that represents the same language as the
original NFA
but without epsilon transitions.
Example:
automata_1 = automata.remove_epsilon_transitions()
automata_1.accept("0000011") # True
automata_1.accept("000001") # False
minimize
This function returns a new NFA
that represents the same language as the
original NFA
but minimized.
Example:
automata_2 = automata.minimize()
automata_2.accept("0000011") # True
automata_2.accept("000001") # False
renumber
This method modifies the automata by renumbering the states. The new states will
be named as q0
, q1
, q2
, and so on.
Example:
get_dfa
This function returns a new DFA that represents the same language as the original NFA.
Example:
automata_3 = automata.get_dfa()
automata_3.accept("0000011") # True
automata_3.accept("000001") # False
complement
This function returns the complement of the automata. The complement of the automata is another automata that accepts the strings that the original automata doesn't accept and vice versa. This function returns a new automata, it doesn't modify the original one.
Example:
not_automata = automata.complement()
not_automata.accept("000001") # True
not_automata.accept("0000011") # False
union
This function receives another automata and returns a new automata that represents the union of the languages of the original automata and the automata received as a parameter.
Example:
from automathon import NFA
nfa = NFA(
q={"A"},
sigma={"a"},
delta={"A": {"a": {"A"}}},
initial_state="A",
f={"A"}
)
nfa_1 = NFA(
q={"C", "D", "E"},
sigma={"a", "b"},
delta={
"C": {
"b": {"D"},
},
"D": {"a": {"E"}, "b": {"D"}},
},
initial_state="C",
f={"E"},
)
union_result = nfa.union(nfa_1)
union_result.is_valid() # True
union_result.accept("aaaaaa") # True
union_result.accept("aaaabbbbaaa") # False
intersection
This function receives another automata and returns a new automata that represents the intersection of the languages of the original automata and the automata received as a parameter.
Example:
nfa = NFA(
q={"q1", "q2", "q3", "q4", "q5"},
sigma={"a", "b"},
delta={
"q1": {
"a": {"q2", "q1"},
"b": {"q1"},
},
"q2": {"a": {"q3"}},
"q3": {
"a": {"q3", "q4"},
"b": {"q3"},
},
"q4": {"a": {"q5"}},
"q5": {
"a": {"q5"},
"b": {"q5"},
},
},
initial_state="q1",
f={"q5"},
)
nfa_1 = NFA(
q={"q1", "q2", "q3"},
sigma={"a", "b"},
delta={
"q1": {
"a": {"q2", "q1"},
"b": {"q1"},
},
"q2": {"a": {"q3"}},
"q3": {
"a": {"q3"},
"b": {"q3"},
},
},
initial_state="q1",
f={"q3"},
)
intersection_result = nfa.intersection(nfa_1)
intersection_result.is_valid() # True
intersection_result.accept("aaaaaaaa") # True
intersection_result.accept("aaaaaaaabbbbb") # True
intersection_result.accept("a") # False
intersection_result.accept("bbbbbbbb") # False
product
This function receives another automata and returns a new automata that represents the product of the languages of the original automata and the automata received as a parameter.
Example:
from automathon import NFA
nfa = NFA(
q={"A", "B"},
sigma={"a", "b"},
delta={"A": {"a": {"B"}, "b": {"A"}}, "B": {"a": {"A"}, "b": {"B"}}},
initial_state="A",
f={"A"},
)
nfa_1 = NFA(
q={"C", "D"},
sigma={"a", "b"},
delta={"C": {"a": {"C"}, "b": {"D"}}, "D": {"a": {"D"}, "b": {"C"}}},
initial_state="C",
f={"C"},
)
product_result = nfa.product(nfa_1)
product_result.is_valid() # True
product_result.accept("") # True
product_result.accept("bb") # True
product_result.accept("bbaaa") # False