Skip to content

Deterministic Finite Automata - DFA

DFA is the class used in automathon to represent a Deterministic Finite Automata.

Attributes

Here are the attributes of the DFA class:

  • q (set[str]): Set of strings where each string is a state of the automata.
  • sigma (set[str]): Set of strings where each string is a symbol of the alphabet, the length of each string must be 1. The empty string is not allowed in the DFA implementation if you need to use them then checkout Non-Deterministic Finite Automata.
  • delta (dict[str, dict[str, str]]): Dictionary that represents the transition function of the automata. The key of the dictionary is a state of the automata and the value is another dictionary that represents the transition function of the automata. The key of the inner dictionary is a symbol of the alphabet and the value is the state that the automata will go if it consumes the symbol.
    • Example:
      delta = {
          'q0' : {'0' : 'q0', '1' : 'q1'},
          'q1' : {'0' : 'q2', '1' : 'q0'},
          'q2' : {'0' : 'q1', '1' : 'q2'},
      }
      
  • initial_state (str): String that represents the initial state of the automata. initial_state must be in q.
  • f (set[str]): Set of strings where each string is a final state of the automata. f must be a subset of q.

Example

Here is an example of how to create a DFA:

from automathon import DFA

q = {'q0', 'q1', 'q2'}
sigma = {'0', '1'}
delta = {
    'q0' : {'0' : 'q0', '1' : 'q1'},
    'q1' : {'0' : 'q2', '1' : 'q0'},
    'q2' : {'0' : 'q1', '1' : 'q2'},
}
initial_state = 'q0'
f = {'q0'}

automata = DFA(q, sigma, delta, initial_state, f)

Functions and Methods

The DFA class has multiple functions and methods that you can use to interact with the automata. Here are the methods:

is_valid

This function checks if the automata is valid. The automata is valid if the initial state and the final states are in q, if the transitions are in q and sigma. If the automata is not valid, the function will raise an exception with the error message.

Example:

automata.is_valid()    # True

accept

This function receives a string and returns True if the automata accepts the string, otherwise it returns False.

Example:

automata.accept("001001")  # True
automata.accept("00100")   # False

view

This method receives a string as the file name for the png and svg files. It enables to visualize the automaton. You can also add custom styling to the automata.

Example:

automata.view("DFA Visualization")

# Add custom styling or change the file format

automata.view(file_name="DFA Custom Styling",
              file_format="png" or "svg",
              node_attr={'fontsize': '20'},
              edge_attr={'fontsize': '20pt'})

get_nfa

This function returns a new NFA that represents the same language as the original DFA.

Example:

automata_nfa = automata.get_nfa()
automata_nfa.accept("001001")  # True

complement

This function returns the complement of the automata. The complement of the automata is another automata that accepts the strings that the original automata doesn't accept and vice versa. This function returns a new automata, it doesn't modify the original one.

Example:

not_automata = automata.complement()
not_automata.accept("00100")    # True
not_automata.accept("001001")   # False

union

This function receives another automata and returns a new automata that represents the union of the languages of the original automata and the automata received as a parameter.

Example:

dfa = DFA(
    q={"A", "B"},
    sigma={"0", "1"},
    delta={"A": {"0": "A", "1": "B"}, "B": {"0": "B", "1": "A"}},
    initial_state="A",
    f={"B"},
)

dfa_1 = DFA(
    q={"R", "S", "T", "U"},
    sigma={"0", "1"},
    delta={
        "R": {"0": "S", "1": "R"},
        "S": {"0": "T", "1": "R"},
        "T": {"0": "U", "1": "R"},
        "U": {"0": "U", "1": "U"},
    },
    initial_state="R",
    f={"U"},
)

union_result = dfa.union(dfa_1)

union_result.is_valid()             # True
union_result.accept("00010010")     # True
union_result.accept("0011000")      # True

intersection

This function receives another automata and returns a new automata that represents the intersection of the languages of the original automata and the automata received as a parameter.

Example:

dfa = DFA(
    q={"A", "B"},
    sigma={"0", "1"},
    delta={"A": {"0": "A", "1": "B"}, "B": {"0": "B", "1": "A"}},
    initial_state="A",
    f={"B"},
)

dfa_1 = DFA(
    q={"R", "S", "T", "U"},
    sigma={"0", "1"},
    delta={
        "R": {"0": "S", "1": "R"},
        "S": {"0": "T", "1": "R"},
        "T": {"0": "U", "1": "R"},
        "U": {"0": "U", "1": "U"},
    },
    initial_state="R",
    f={"U"},
)

intersection_result = dfa.intersection(dfa_1)

intersection_result.is_valid()          # True
intersection_result.accept("0001")      # True
intersection_result.accept("00010010")  # False

difference

This function receives another automata and returns a new automata that represents the difference of the languages of the original automata and the automata received as a parameter.

Example:

dfa = DFA(
    q={"1", "2"},
    sigma={"a", "b"},
    delta={"1": {"a": "2", "b": "1"}, "2": {"a": "1", "b": "2"}},
    initial_state="1",
    f={"1"},
)

dfa_1 = DFA(
    q={"3", "4"},
    sigma={"a", "b"},
    delta={"3": {"a": "3", "b": "4"}, "4": {"a": "4", "b": "3"}},
    initial_state="3",
    f={"3"},
)

difference_result = dfa.difference(dfa_1)

difference_result.is_valid()        # True
difference_result.accept("b")       # True
difference_result.accept("aba")     # True
difference_result.accept("aa")      # True

symmetric_difference

This function receives another automata and returns a new automata that represents the symmetric difference of the languages of the original automata and the automata received as a parameter.

Example:

dfa = DFA(
    q={"1", "2"},
    sigma={"a", "b"},
    delta={"1": {"a": "2", "b": "1"}, "2": {"a": "1", "b": "2"}},
    initial_state="1",
    f={"1"},
)

dfa_1 = DFA(
    q={"3", "4"},
    sigma={"a", "b"},
    delta={"3": {"a": "3", "b": "4"}, "4": {"a": "4", "b": "3"}},
    initial_state="3",
    f={"3"},
)

symmetric_difference_result = dfa.symmetric_difference(dfa_1)

symmetric_difference_result.is_valid()      # True
difference_result.accept("b")               # True
difference_result.accept("a")               # True
difference_result.accept("abbabb")          # False

product

This function receives another automata and returns a new automata that represents the product of the languages of the original automata and the automata received as a parameter.

Example:

dfa = DFA(
    q={"A", "B"},
    sigma={"a", "b"},
    delta={"A": {"a": "B", "b": "A"}, "B": {"a": "A", "b": "B"}},
    initial_state="A",
    f={"A"},
)

dfa_1 = DFA(
    q={"C", "D"},
    sigma={"a", "b"},
    delta={"C": {"a": "C", "b": "D"}, "D": {"a": "D", "b": "C"}},
    initial_state="C",
    f={"C"},
)

product_result = dfa.product(dfa_1)

product_result.is_valid()       # True
product_result.accept("bb")     # True
product_result.accept("b")      # False